Have questions? Need Help?
757.723.6531 | 800.950.2468

Teledyne Hastings Instruments Blog

Fundamentals Vacuum and Mass Flow Technology

Posted by Doug Baker on Wed, Jun 22, 2016 @ 10:27 AM

One of the goals of these blog postings is to give readers knowledge about vacuum and mass flow technology. The Society of Vacuum Coaters has established a foundation (SVCF) with a similar goal. Dr. Don McClure (Acuity Consulting & Training) has created “The Vacuum Wizard Video”. Dr. McClure worked at both IBM & 3M and has been teaching for over 20 years about vacuum coating onto flexible substrates.

Generic_Roll_Coater_Designs.jpg

As stated on the SVCF website, “The Vacuum Wizard Video brings to life the fundamentals of vacuum and vacuum coating technology through an informal and thought provoking presentation using non-technical jargon and filled with live demonstrations.

The Vacuum Wizard Video seeks to raise awareness of students and educators about the fascinating world of vacuum and vacuum coating technology. The only prerequisite is a curiosity about this amazing technology.

The Vacuum Wizard Video can be a useful training tool in the corporate world for personnel who require a basic understanding of vacuum technology. Sales representatives, customer service personnel, field service and maintenance technicians, lab technicians, and engineers with no vacuum technology background, can all benefit from the Vacuum Wizard Video.”

Vacuum_Model_2002_Gauge.jpg

(Check out the Teledyne Hastings’ Vacuum Model 2002 Vacuum Gauge on the table)  Click the button below to request an evaluation sample of the 2002 Vacuum Gauge

 Request   Evaluation Sample

You can get more information about the SVC Foundation and the video series by visiting:

http://svcfoundation.org

Click to see a sample of the Vacuum Wizard Video 

 

Tags: Mass Flow, vacuum gauges

FAQ Corner – What is turndown ratio?

Posted by Wayne Lewey on Mon, Jul 27, 2015 @ 04:03 PM

We are occasionally asked for the turndown ratios of our flow meters and flow controllers.  There are varying perceptions as to what this term actually means.

The turndown ratio of a Mass Flow Meter (MFM) or Mass Flow Controller (MFC) defines the usable range for which it can operate while maintaining its published accuracy.  It can be expressed using the following formula:

Turndown_ratio

Teledyne Hastings Flow Meter HFM-200-202A flow meter with a large turndown ratio will have a large operating range.  This can also be indicative of the flow meter’s cost.  For example, variable area flow meters (rotameters) typically have lower turndown ratios compared to thermal mass flow meters.

Most analog mass flow meters have an accuracy of ± 1% of Full Scale (FS) and have resolution better than 1%.  The usable range is from 1% to 100%.  They will have a turndown ratio of 100/1 or more commonly expressed as 100:1.  Digital flow meters will have an even greater turndown ratio due to their higher accuracy.

HFC-D-308Most analog mass flow controllers also have an accuracy of ± 1% FS.  However, they typically have an automatic valve shut circuit that closes the valve at flow rates below 2% of FS.  This is to ensure full valve closure in the event of a small zero offset.  The usable range is from 2% to 100%.  Since measurement is not possible below 2%, these will have a turndown ratio of 100/2 = 50/1 or 50:1.

 For more information on Turndown Ratio or our Flow Meters, please contact Wayne Lewey 

 

 

Request A Quote

Tags: Flow Meter

What is a Thermal Mass Flow Meter & What is its Working Principle? - Part 2 of 2

Posted by Doug Baker on Tue, Jun 09, 2015 @ 11:58 AM

This is part two of a two-part blog on Thermal Mass Flow sensors.  In part one, we described the desired characteristics of a thermal mass flow sensor.  In part two, we will discuss the operation of the 300 series flow sensor (Patent #6,125,695) and how its design addresses the desired traits.

300_series_flow_sensor_insideIn our previous blog, we showed a cutaway of a thermal mass flow meter.  Now let’s take an inside look at the 300 series flow sensor:

When gas is flowing through the bypass shunt, a small pressure drop is developed which will direct a fraction of the flow through the arced / semi-circular capillary tubing in the flow sensor. On the outside of the capillary tube, there are two resistive wire coils which are tightly wound and in excellent thermal contact with the tube. These two identical windings are referred to as:

  • Upstream Heater Coil (1)
  • Downstream Heater Coil (2)

Associated with each of the two heated coils is an ambient coil. The ambient coil is in excellent thermal contact with the aluminum ambient block.  Aluminum has a very high thermal conductivity which ensures that both ends of the sensor tube and the two ambient coils (3 and 4) will be at the same temperature.

heated_coils_upstream_downstreamTwo identical Wheatstone resistance bridges are formed from the two pair of coils (see image on right).

The circuit shown in the image on the right is designed to ensure that the heated coils (upstream and downstream) are maintained at a constant temperature (ΔT) above the corresponding ambient coils.

Next, we calculate the power (W) required to maintain ΔT by:

Power_Formula

This power will be calculated for both the upstream bridge and the downstream bridge. It can be shown that:

 Upstream_downstream_bridge_formula

So, by maintaining both heaters at the same ΔT above ambient, the mass flow rate is directly proportioned to the difference in power (W) between the two bridges. For example, when no flow is passing through the capillary sensor tube, the power needed to maintain ΔT will be the same (i.e. ṁ = 0)

As gas flow increases in the tube, heat is transferred from the upstream heater to the gas stream.  This will force the upstream circuit to use more power to maintain ΔT. In turn, the gas will transfer heat to the downstream heater which will cause the downstream circuit to use less power to maintain ΔT.

LinearityNow, here is the best part: the mass flow rate is directly proportional to the power difference. In other words, LINEARITY!

In our previous blog, we discussed how excellent linearity leads to improved accuracy. And, not only does the 300 series sensor give excellent linearity, the circuit shown on the right reacts very fast to changing flow. Thus, the 300 series has excellent responsive time.

One last note, we have designed the 300 series to use relatively large diameter tubing.  This larger tubing allows flow meters to be designed with lower pressure drop than many mass flow meters on the market.  

Visit our website for more information on Teledyne Hastings 300 series Flow Meters.

Teledyne Hastings' Thermal Mass Flow Sensors are used worldwide.  Download our application note on High Throughput Leak Detection to learn about improving lead testing precision and throughput and how to reduce testing time.  

High Throughput Leak Detection

Be sure to visit our website for additional information on Teledyne Hastings Mass Flow Controllers and Mass Flow Meters

Tags: Flow Meter

Facts You Might Not Know about Teledyne Hastings Instruments

Posted by The Teledyne Hastings Team on Thu, May 14, 2015 @ 04:45 PM

Quality Teledyne Hastings ISO 9001 CertificationLast month, we passed our ISO 9001 surveillance audit.  It has been over twenty years since we first obtained ISO and we wanted to take a step back and review some significant accomplishments.  

Teledyne Hastings Instruments rich history and customer centric vision continues to support, influence and grow with those who depend on quality process control and automation.

That's why we wanted to take a moment and celebrate a milestone with our core clients and those considering a Teledyne Hastings Instruments Flow instrument or Vacuum Gauge for the first time.


2015_Infographic_ISO_20_Years_2

Teledyne Hastings Instruments' has been providing quality thermal mass flow instruments and vacuum meters and controllers for applications ranging from academic research to space exploration for over 70 years.  Let us work with you to find the best solution for your process.

OEM, custom applications, lead time crunch, just curious:   

Contact Us

Tags: Teledyne Hastings Instruments, Flow Controller, Flow Meter, Vacuum gauge, vacuum controllers, ISO 9001 and Thermal Mass Flow, ISO 9001 and Vacuum Gauges

What is a Thermal Mass Flow Meter & What is its Working Principle? - Part 1 of 2

Posted by Will Harrison on Fri, Mar 20, 2015 @ 10:59 AM

ThermalMassFlowSensorCutawayThis is part 1 of a 2-part blog on the Thermal Mass Flow Meter.  In Part 1 we will explain the desired characteristics of a mass flow meter (and its sensor). Part 2 will discuss the operation of the Teledyne Hastings 300 Series flow meters (Patent #6,125,695) and how the 300 Series thermal mass flow sensor meets each of the desired characteristics described below.

What is a thermal mass flow meter:

  • Electronic Circuit Card

  • Flow Sensor

  • Bypass Shunt

  • Base

A cutaway is shown in the image on the right.

A flow meter measures the amount of fluid that passes through the meter. At Teledyne Hastings we design our thermal mass flow meters for dry and clean gases. This is useful for wide array applications that include measuring natural gas or air and biogas measurement.

In a typical mass flow meter, gas enters the meter via an upstream port connected to the process to be measured (by Swagelok®, VCR®    or other fitting).  A majority of the gas passes through the meter’s bypass shunt; however, a certain fraction flows through the meter’s thermal flow sensor.

The meter’s thermal mass flow sensor measures the gas molecular flow that passes through its capillary tube by quantitating thermal energy transfer. The mass flow rate is a function of the gas flow and the specific heat of the gas. The thermal mass flow sensor then provides accurate measurements which can be referenced back to standardized volumetric flow units.  Reference conditions (standard temperature and pressure) are based upon the amount of gas flow, which is determined by the number of gas molecules, using the ideal gas law. The meter’s shunt is selected such that the amount of gas moving through the flow sensor is approximately the same at full-scale flow. After passing through the thermal mass flow sensor, the gas then exits the flow meter via a downstream port.

Thermal Mass Flow Meter Characteristics

FlowSensorOutput

Ideally, a thermal mass flow sensor will exhibit the following characteristics:

  • Linearity: Linearity means that the sensor’s electronic output is directly proportional to the rate of gas flow that is moving through the sensor (within its range). Linearity of the flow sensor leads to the second attribute: Accuracy.
  • Accuracy: Accuracy is dependent on the sensor’s Linearity. An accurate flow sensor provides the benefits of better gas thermal flow measurement, flow control and a thorough understanding of the system’s parameters.
  • Fast Response:  Ideally, the flow sensor would respond instantaneously to a change in the mass flow rate. Aside from the obvious benefit of instant real-time oversight of the process flow, fast response becomes critical when the flow meter is coupled with a proportional control valve to create a thermal mass flow controller.
  • Low Differential Drop: For a flow sensor to be ideal for leak testing, it should have a low differential pressure drop across the meter. 

Typically, a mass flow meter is calibrated using nitrogen gas (or in the case of very large flows, it may be calibrated in air). The output of the flow meter can then be scaled for use with other process gases. This means the flow meter technician can calibrate a flow meter for use with a corrosive process gas, such as silane (SiH4), without having to use that specific type of gas. A linear flow sensor will retain its linear behavior as the gas is switched from the calibration gas (N2) to the process gas.

How does a thermal mass flowmeter work?

When gas is flowing through the bypass shunt, a small pressure drop is developed which will direct a fraction of the flow through the arced / semi-circular capillary tubing in the flow sensor. On the outside of the capillary tube, there are two resistive wire coils that act as temperature sensors which are tightly wound and in excellent thermal contact with the tube. These two identical windings are referred to as:

  • Upstream Heater Coil (1)
  • Downstream Heater Coil (2)

Associated with each of the two heated coils is an ambient coil. The ambient coil is in excellent thermal contact with the aluminum ambient block.  Aluminum has a very high thermal conductivity which ensures that both ends of the sensor tube and the two ambient coils (3 and 4) will be at the same temperature. 

Upstream - Downstream Heater Coil ImageTwo identical Wheatstone resistance bridges are formed from the two pair of coils (see image on right).

The circuit shown in the image on the right is designed to ensure that the heated sensor (upstream and downstream) are maintained at a constant temperature differential (ΔT) above the corresponding ambient coils.

Next, we calculate the power (W) required to maintain ΔT by:

Power requires to maintain T

This power will be calculated for both the upstream bridge and the downstream bridge. It can be shown that: 

Upstream - Downstream Bridge calculation

So, by maintaining both heaters at the same temperature difference (ΔT) above ambient, the mass flow rate is directly proportioned to the difference in power (W) between the two bridges. For example, when no flow is passing through the capillary sensor tube, the power needed to maintain that temperature difference (ΔT) will be the same (i.e. ṁ = 0)

As gas flow increases in the tube, heat is transferred from the upstream heater to the gas stream.  This will force the upstream circuit to use more power to maintain ΔT. In turn, the gas will transfer heat to the downstream heater which will cause the downstream circuit to use less power to maintain ΔT.

Now, here is the best part: the mass flow rate is directly proportional to the power difference. In other words, Linearity!

Linearity

Application

Measuring gas flows has become increasingly critical to many processes and the mass flow meter achieves those results with a high level of accuracy.  Accurate readings must reference standard temperature and pressure (STP) conditions, without having to correct for temperature and pressure using volumetric flow meters. Typically this requires a temperature compensation for the fluid temperature. Using this method is also not a direct mass measurement because the only direct measurement taken is of the fluid temperature. This can be used for heavy gases such as natural gas or gases as light as hydrogen.

Thermal mass flow meters exhibiting low pressure differentials are ideal for measuring flow in leak testing applications and must provide fast response and accurate gas flow readings.

Teledyne Hastings designed its first fast-response flow meter for leak testing applications in the automotive industry. The low-pressure differential and response speed proved to be highly successful. Today, Teledyne Hastings' Thermal Mass Flow Sensors are used globally in a variety of diverse industries and applications.  For more information on Best Practices for Flow Controllers and Thermal Mass Flow Meters download our whitepaper.

Download Whitepaper

Be sure to visit our website for additional information on Teledyne Hastings Mass Flow Controllers and Mass Flow Meters

In our next blog, we will discuss the thermal mass flow sensor at the heart of Teledyne 300 Series of mass flow meters. We will also look at how the 300 Series thermal mass flow sensor meets each of the desired characteristics described above.

Tags: Thermal Flow

Understanding Piezoelectric Pressure Sensors and Piezo Pressure Vacuum Gauges

Posted by Will Harrison on Thu, Nov 20, 2014 @ 10:09 AM

Understanding Piezoelectric Pressure Sensors and Piezo Pressure Vacuum Gauges

Piezoelectric pressure sensors use a specialized material to create a small voltage when mechanical stress is applied to it. In this blog we will explain the principles behind the Piezoelectric pressure sensor, review its specific attributes and then discuss how it is used in vacuum gauge technology and industry applications.

Piezoresistive Pressure Sensors

A Piezoelectric pressure sensor functions on the principle that when mechanical stress is applied to a piezoelectric crystal, an electric potential is generated which is directly proportional to the pressure applied. A vacuum gauge that uses a piezoelectric pressure sensor typically houses the sensor in the diaphragm. This provides good linearity for vacuum transducers as the output signal correlates to the applied pressure. This signal is then used to produce an output voltage that is converted to a pressure measurement. Piezoelectric sensors are rugged and often used for measuring dynamic pressure. Because Piezoelectric sensors have a high sensitivity to dynamic changes in pressure, they are well-suited to the measurement of small changes, even in very high-pressure environments. Although they have a high sensitivity to dynamic pressure that can also be used to measure static pressures. 

Piezoelectric pressure sensors are typically used for measuring atmospheric pressure but can be paired with additional vacuum, pressure sensor technologies to create a wide-range vacuum gauge capable of measurement from vacuum to atmosphere. In some cases, a wide-range vacuum gauge can be further expanded upon by adding a 3rd technology to provide a compact solution capable of wide-range measurement from atmospheric pressure to ultra-high vacuum.

"Direct" and "Indirect" Vacuum Pressure Gauges

In vacuum technology, pressure measurement is accomplished using either  “Direct” or “Indirect” methods. Direct gauges are so-called because they directly measure the force imparted on a surface. Based on the formula: P = F /A (pressure (P) equals force (F) per unit area (A), the gauge directly measures the pressure. Some examples of direct gauges include: bourdon gauges, capacitance manometers and Piezoelectric gauges.

Bourdon Gauge Teledyne Hastings Instruments Framed

Bourdon Gauge

One of the primary benefits of a direct vacuum gauge is the ability to make accurate measurements regardless of gas type. For example, if the system has 20 Torr of argon, helium, methane, or air, a direct measurement gauge will read the same pressure. Because of this attribute, direct gauges are referred to as “gas composition independent”. These are helpful to see the operating pressure being used during the process. 

Indirect gauges do not “directly” measure the force associated with the gas in the chamber. Rather, these gauges measure a property associated with the gas. For example, thermocouple vacuum gauges measure the thermal conductivity of the gas, which is a function of the pressure. Another example of an indirect gauge is the pirani vacuum gauge which measures the pressure-dependent thermal conductivity of the gas in a vacuum using a heated element, such as a wire or thin-film membrane. The heated element is part of a resistance bridge. The temperature, and thus the resistance of the heated element in the vacuum, changes as the pressure changes. By measuring the electrical behavior of the bridge, the pressure in the vacuum can be determined. Consequently, thermocouple and Pirani vacuum gauges can both be called indirect gauges.

Thermocouple_Guage_Tubes_Teledyne_Hastings_Instruments_framed                 HVG 2020B Angle Finger 20.9C

 Thermocouple Gauge                     Pirani Gauge

Application: Vacuum Pressure Impregnation (VPI) Systems

Teledyne Hastings uses piezo sensors for pressure measurements in our HVG-2020A and HVG-2020B vacuum gauges. The HVG-2020A vacuum gauge uses a Piezoelectric sensor that provides accurate pressure measurement throughout the rough vacuum region. The HVG-2020B is a dual-sensor vacuum gauge that uses a Piezoelectric sensor and a Pirani sensor to measure a wide range.

Vacuum Pressure Impregnation VPI System

Because the HVG-2020A measures from 0.1 Torr to 1000 Torr, it is well-suited to vacuum pressure impregnation (VPI) applications. Vacuum pressure impregnation (VPI) is an important application for applying insulating materials, as well as producing void-free castings. A typical example is the encapsulation of windings in electric motors. If an insulating resin is simply “painted” on a winding, the result will be a network of uninsulated voids between the winding layers. Applying pressure may force some insulation into the voids, but the subsequent release of that pressure will cause the trapped gas to expand again, causing voids to reappear.

These voids in the insulation can lead to motor failure due to movement of the wiring during operation. Also, in high-voltage applications, these air-filled gaps can serve as sites for corona discharge formation, leading to losses in efficiency and resulting in further weakening of the dielectric.

The proper method to prepare windings, and other potted devices for impregnation, is to begin by applying vacuum.

  1. The first step is to load the assembly into a vacuum/pressure chamber and apply vacuum to remove air from the voids between the windings. A suitable pressure for this step is 5 Torr.
  2. The next step involves a two-part soak. While under vacuum, the insulating resin is introduced into the chamber from a storage vessel. The vacuum provides the additional benefit of removing any air bubbles that may be present in the resin. After a dwell period, the chamber is pressurized to 85-95 psig for another period of time. This pressurization forces the resin into the previously evacuated voids in the winding layers.
  3. After another dwell period, the pressure is relieved and the surplus resin is returned to the storage vessel. With the chamber at atmospheric pressure, it is opened and the assembly is removed. This process results in void-free application of the insulating resin on the windings.

Teledyne Hastings: HVG-2020A Vacuum Gauge

HVG 2020A_76307_fingerThe Teledyne Hastings’ HVG-2020A vacuum gauge is a media-isolated, gas composition independent, piezoresistive instrument that provides accurate pressure measurement throughout the rough vacuum region. 

The HVG-2020A is easy to install, can be configured with an optional touchscreen display to offer a choice of data views, and provides both analog and digital output for process control integration.

  • With a wide variety of linear analog output signals to select from, the HVG-2020A is an excellent choice to replace more expensive capacitance manometers.
  • Digital output options include RS232 and RS485 via a connection on the top of the gauge.  A USB connection is also available on many models to make connection and operation simple.
  • Monitor and view data remotely using our free, Microsoft® Windows®-based software and log data to Microsoft® Excel® for comprehensive diagnostics that record how the vacuum behaves over time.

Analog I/O: The HVG-2020A has a 9-pin D-sub connection on top of the gauge that allows an analog output signal to be measured amongst other features.  The selected linear analog output signal is proportional to the full-scale range of the sensor (1000 Torr).

  • HVG 2020A_topAvailable outputs include: 0-1 VDC, 0-5 VDC, 0-10 VDC, 0-20 mA, and 4-20 mA.  The vacuum gauge is factory-configured with one of these outputs “active”, but can be easily changed using the touchscreen interface (if installed), or using digital communication when not configured with a touchscreen. Digital communication with the HVG-2020A will be discussed in greater depth in the next section.  
  • The 9-pin D-sub connection has Hi and Lo setpoints which are activated when the pressure is above or below the respective setpoint. Additionally, the 9-pin D-sub has a pin for input power and can accept 12-36 VDC.  For installations without 12-36 VDC, power can be supplied using a bayonet-style connector at the 24 VDC input connection.

Digitial I O for HVG 2020ADigital I/O:  As mentioned earlier, the HVG-2020A offers a variety of digital communication options in addition to the previously discussed analog choices.

 

  • The micro-USB connection is the simplest method to interface the vacuum gauge and allows it to be directly connected to a PC without the need for adapters or extra wiring. 
  • The 4-conductor TRRS connection can be used to “daisy-chain” multiple gauges together using RS485 or a standard RS232 communication connection. 
  • The 9-pin D-sub connection has two pins designated for TTL serial communication.
  • LabVIEW™ Drivers

All of these digital communication options (with the exception of TTL) enable PC connection and allow monitoring and viewing of data remotely using our free Microsoft® Windows®-based software.  This software has many useful features including data logging and  customization / configuration of the vacuum gauge.  Digital communication is also used to change the analog output, adjust Hi and Lo setpoint values, stream pressure readings, or change pressure units (among many other functions), when the HVG-2020A is not configured with the optional display.

Touchscreen Display:  The most powerful feature of the HVG-2020A is the optional touchscreen display which allows monitoring of pressure measurements in a variety of combinations and graphic representations while operating. The display is powered off the vacuum gauge power supply (no additional power supply needed) and is especially useful for installations in which a remote display would be inconvenient. Five different display modes (shown left to right below) include: Pressure, Pressure and Temperature, Setpoint, Bar Graph, and Pressure over Time.  Note that the pressure measurement is always displayed in each mode. 

The touchscreen’s Menu Button allows the user to cycle through a selection of submenus to change the screen orientation (should the gauge be mounted in a position other than vertical), zero the gauge (only performed if the system pressure is known to be well below 0.1 Torr), view device information (serial number and firmware level), change the analog output, select RS232 or RS485 and a number of baud rates, and restore the vacuum gauge’s configuration to factory default settings.  The straight-forward arrangement of measurements and easy to read display, lets you “see clearly”, similar to 20/20 vision!

Applications and Industries

  • Rough Vacuum Monitoring

  • Semiconductor
  • Laser Systems
  • Chemical Research
  • Air Sampling
  • Central Vacuum Monitoring
  • Oil Reprocessing
  • Medical Research

Tags: Vacuum gauge, Sensor, pressure, vacuum pressure, vacuum instruments

Vacuum Pressure Measurement & Unit Guide

Posted by Doug Baker on Mon, Sep 22, 2014 @ 04:23 PM

Note: The content of this blog was updated February 4, 2023 to provide more information for the reader.

The applications engineers here at Teledyne Hastings discussed topics for our blog. We all agreed that one of the more frequent questions fielded, involves the units used to measure vacuum levels. We find that the technicians who use their vacuum system daily often seem to develop a sixth sense about the “health” of their systems. They know something isn’t quite right when the base vacuum pressure (or rate of pressure change) is not what they expect. So, when vacuum pressure measurements are inconsistent from batch-to-batch, that is the time when the user stops to ask the meaning behind the data that their vacuum measurement instrumentation is providing.

Measuring Vacuum Pressures

A vacuum exists when there is negative pressure, or when there is system pressure that is less than atmospheric pressure. Manufacturing processes generate different levels of vacuum when operating at peak efficiency for a given vacuum application that are measured using a vacuum gauge. Absolute vacuum is the absence of all matter. Atmospheric pressure, also known as barometric pressure, is the pressure due to earth’s atmosphere. Atmospheric pressure is 760 Torr or 14.696 psia at sea level and changes with altitude. The vacuum pressure scale is book-ended by absolute vacuum pressure in the “ultra-high” vacuum range and atmospheric pressure at the “rough” vacuum range. It should be noted that absolute vacuum, or perfect vacuum, is never truly attained.

Most users know that vacuum is commonly measured using units of pressure. There are a few different systems of pressure measurement, and this blog will discuss those most used. In Armand Berman’s book, Total Pressure Measurements in Vacuum Technology, pressure unit systems are divided into two categories: “Coherent Systems” and “Other Systems”.

Common Units of Vacuum

“Coherent Systems” of units are based on the definition of pressure (P) as the force (F) exerted on a chamber wall per unit area (A). P = F/A. The International System of Units, or SI units, is commonly used for pressure measurement. http://physics.nist.gov/cuu/Units/units.html The SI unit for pressure is the Pascal (Pa), and it is interesting to note that NIST (National Institute of Standards and Technology) published papers are always required to use SI units. Again, the SI unit for pressure (force per unit area) is the Pascal. 1 Pa = 1 N /m2.

As a unit of pressure, the Pascal is not always convenient to use because vacuum systems often operate in pressure ranges where collected data results in large numbers. For example, near atmospheric pressure, we would measure approximately 100,000 Pa. So, a more convenient unit, the bar, was developed. (1 bar = 100,000 Pa)

Moving lower in pressure, it is very helpful to then use the mbar (1 mbar = 0.001 bar), which has become the predominate unit of measure in Europe, as the basis for describing pressure levels. As a specific example, look at the base pressure specification of a turbo pump, which will typically be given in terms of mbar (e.g., Base Pressure < 1 x 10-10 mbar).

“Other Systems” of units include the Torricelli system, which is based on an experiment (shown in the diagram below) conducted by the Italian scientist, Evangelista Torricelli. In this experiment, the pressure exerted on the mercury can be shown to be P = hdg, where h is the height of the mercury column, d is the density, and g is the acceleration due to gravity.

Simple Barometer

By measuring the mercury column height, the pressure can be determined. The Torr unit (named after Torricelli) has been defined as 1 millimeter of mercury (1 Torr = 1 mmHg). This unit, as well as the use of the mTorr unit (1 mTorr = 0.001 Torr), is commonly used in the United States. Historically, pressure was sometimes described in terms of “microns”, which simply meant a mercury column height of one micron (1x10-6 m). Note that the micron and the mTorr are the same.

Lastly, it should be noted that occasional confusion arises between the use of different, but seemingly similar, units of pressure. As explained above, the mbar and the mTorr are not the same. One mbar has the same order of magnitude as one Torr (1 mbar = 0.75 Torr).

 

Unit Conversions

The table below gives some conversion values between various commonly used units of pressure and vacuum. A useful website for conversions:

http://www.onlineconversion.com/pressure.htm

 

Pa

mbar

Torr

mTorr (micron)

Atm

1 Pa =

1

0.01

0.0075

7.50

~ 10-5

1 mbar =

100

1

-.75

750.06

~ 10-3

1 Torr =

133.3

1.333

1

1000.0

~ 10-3

1 mTorr (micron) =

0.1333

0.00133

0.001

1

~ 10-6

1 Atm =

101,325

1013.25

760

760,000

1

 

Absolute Pressure and Gauge Pressure

In conclusion, keep in mind that vacuum measurements can be referenced to ambient pressure, gauge pressure measurement or absolute pressure measurement (perfect vacuum). An absolute pressure measurement is referenced with respect to absolute vacuum. Absolute pressure will often be designated by the letter “a” after the unit of measure; “psia.” ​As an example, an absolute pressure reading of 30 psia (pounds per square inch absolute) is a pressure that is 30 psi above vacuum. It is important to understand that there is no negative absolute pressure. There are some

Gauge pressure measurements are measured relative to the ambient atmospheric pressure. Relative, or gauge pressure, will often be designated by the letter “g” after the unit of measure; “psig.” As an example, 30 psig is a gauge pressure that is 30 psi above ambient atmosphere (typically 14.7 psia at sea level). In this example the gauge pressure, 30 psig, is equal to an absolute pressure of 44.7 psia.

 

What is a vacuum system?

A vacuum system can consist of multiple a vacuum pumps and vacuum gauges attached to a tank that is designed to measure below atmospheric pressure. The vacuum pumps reduce the air pressure inside of the tank to the pressure range that the vacuum pump is rated for. Different vacuum pumps bring the vacuum pressure to different levels depending on the strength of the vacuum pump.

Attached to the tank is usually at least one vacuum pressure gauge. An application may require another type of vacuum gauge to measure a different pressure point. An example of this would be using a piezo pressure gauge and a Pirani pressure gauge to have a larger range of the vacuum pressure measured. A piezo vacuum gauge would be used to measure the rough vacuum range around atmosphere and the Pirani could be used to measure below 1 Torr in the mTorr range. There are vacuum gauges that use technologies from different vacuum gauges to create a combination vacuum gauge to measure vacuum pressure across a wider pressure range. Teledyne Hastings combines both the Pirani and piezo technologies to make the HVG-2020B vacuum pressure gauge.

 

Vacuum Gauges Poster

Mass Flow - Vacuum Gauge Posters

Vacuum Gauges
Free Poster
Unit Conversions and More

Please send me the poster(s)

 


Original Content posted Sept 22, 2014

FAQ Corner - Units for Vacuum Measurement
an overview of units used to measure pressure

Earlier this year, the applications engineers here at Teledyne Hastings discussed topics for our blog. We all agreed that one of the more frequent questions that we discuss with folks involve the units used to measure vacuum levels. We find the technicians who use their vacuum systems daily often seem to develop a sixth sense about the “health” of their systems. They know something isn’t quite right when the base pressure (or rate of pressure change) is not what they expect. So, when pressure measurements are not consistent from batch to batch, that is the time when the user stops to ask the meaning behind the data that their vacuum measurement instrumentation is providing.

Now, most users know that vacuum is commonly measured using units of pressure. There are a few different sets of pressure units, and this blog will discuss the more commonly used ones. In Armand Berman’s book, Total Pressure Measurements in Vacuum Technology, pressure unit systems are divided into two categories: “Coherent Systems” and “Other Systems”.

Coherent Systems of Units are based on the definition of pressure (P) as the force (F) exerted on a chamber wall per unit area (A). P = F/A.  The International System of Units, or SI units, is commonly used for pressure measurement. http://physics.nist.gov/cuu/Units/units.html  The SI unit for pressure is the Pascal (Pa). It interesting to note that at NIST (National Institute of Standards and Technology), published papers are always required to use the SI set of units. Again, the SI unit for pressure (force per unit area) is the Pascal. 1 Pa = 1 N /m2.

Now, the Pascal as a unit of pressure is not always the most convenient because vacuum systems are often operating in a range of pressures where we would need to collect data using large numbers. For example, near atmospheric pressure, we would measure approximately 100,000 Pa. So, a more convenient unit, the bar, has been derived. (1 bar = 100,000 Pa)

Moving lower in pressure, it is very helpful to then use the mbar (1 mbar = 0.001 bar). So many vacuum users, especially in Europe, use the mbar as the basis for describing pressure levels. As a specific example, look at the base pressure specification of a turbo pump, it will be given in terms of mbar (e.g. Base Pressure < 1 x 10-10 mbar).

Another system of pressure units is based on the Torricelli experiment (shown in the diagram). In this experiment, the pressure exerted on the mercury can be shown to be P = hdg, where h is the height of the mercury column, d is the density, and g is the acceleration due to gravity.

Simple Barometer

By measuring the mercury column height, the user can determine the pressure. The Torr unit (named for the Italian scientist Torricelli) has been defined to be 1 millimeter of mercury (1 Torr = 1 mmHg). This unit is very common, especially in the United States. It is also common to use the mTorr (1 mTorr = 0.001 Torr). Many years ago, pressure was sometimes described in terms of “microns”, which simply meant a mercury column height of one micron (1x10-6 m). Note that the micron and the mTorr are the same.

One last word about the units used to measure vacuum: on occasion, there is confusion between pressure units. As we have seen above, the mbar and the mTorr are not the same. One mbar has the same order of magnitude as one Torr  (1 mbar ≈ 0.75 Torr).  The table below gives some approximate conversion values. A useful website for conversions:

 http://www.onlineconversion.com/pressure.htm

 

Pa

mbar

Torr

mTorr (micron)

Atm

1 Pa =

1

0.01

0.0075

7.50

~ 10-5

1 mbar =

100

1

0.75

750.06

~ 10-3

1 Torr =

133.3

1.333

1

1000.0

~ 10-3

1 mTorr (micron) =

0.1333

0.00133

0.001

1

~ 10-6

1 Atm =

101,325

1013.25

760

760,000

1

Douglas Baker is the Director of Sales & Business Development of Teledyne Hastings. Antonio Araiza prepared the Torricelli experiment drawing. Antonio is the head of Technical Documentation at Teledyne Hastings (and is among the best soccer referees in the Commonwealth of Virginia).

Tags: Teledyne Hastings Instruments, pressure, mTorr, mBar, micron, pascal, torr, vacuum pressure, units of measurement, vacuum gauges, vacuum meters, vacuum controllers

New! Free Teledyne Hastings Mass Flow Converter APP

Posted by Doug Baker on Tue, Aug 05, 2014 @ 02:56 PM

Teledyne Hastings is proud to offer our Mass Flow Converter app. We have created a version for iPhone, iPad, and Droid. We have also created a web-based version that you can find at www.massflowconverter.com

In this blog article, we will discuss the motivation to build the app, how it works, and how it can be used.

The first question you might be asking is: Why do we need an app to convert from one set of mass flow units to another? For instance, if you want to convert from inches to centimeters, you would just multiply by 2.54. But, converting between mass flow units is not always that straight forward. So we have developed a tool that makes it easy.

We are going to look at some examples, but first let’s review what we mean by mass flow. When we think about mass flow, it can be helpful to think in terms of the flow of individual molecules. So while flow meters are often specified by units like sccm (standard cubic centimeters per minute) or scfm (standard cubic feet per minute), the mass flow rate is ultimately about the number of molecules (n) moving through a given cross sectional area per unit time (see figure below).

 

 Cross Section resized 600

 

 

 

So as our first example, let’s take a look at the conversion of 10,000 sccm (10,000 cm3/min) to a molecular flow rate. First, we need to ask, “How many molecules are in 10,000 sccm?” In the figure below, we show a container that is 10,000 cm3 in volume. Now, before we can calculate the number of gas molecules in a volume, we must know the pressure and temperature of the gas. We can use the ideal gas law:

n = (P * V) / R*T where n is the number of molecules, P is the pressure, V is the Volume, R is the Universal Gas Constant and T is the Temperature.

 

Framed Molecules per volume

Now we need to select some given pressure and temperature so that we can calculate the number of molecules – these are called the reference conditions or the STP (Standard Temperature and Pressure). In many cases, 0°C and 760 Torr are used for the STP. But this is not always the case. So it is always very important to specify the reference conditions (STP) any time you use a standardized mass flow unit like sccm, slm, scfh, etc (any mass flow unit that starts with “s” is going to need the reference conditions or STP specified). In our example, we are going to use STP of 0°C & 760 Torr.

OK, so here we go:     n = (1 atm) * (10,000 cc) / (82.053 cc * atm / K * mole) * (273 K)

Note that we have used a value of R in terms of pressure in Atmosphere (760 Torr = 1 atm), and Temperature in Kelvin (0°C = 273K). 

n = 0.45 mole

In other words, a flow rate of 10,000 sccm (0C, 760 Torr) is the same as a molecular flow rate of 0.45 Mole / minute.

OK that is the hard way. It’s much easier to use the mass flow converter app. In the example shown above, we would dial sccm on the left and Mole/Min on the right. Then to select the reference conditions, we use the menu in the center. See Fig. 3

 Framed screen shot mass flow converter app N2 resized 600

If you are like me, you will start to play with the App. And soon you will notice that the user can change the gas using the pull down menu at the top. But notice that in the case of our first example (converting from standardized mass flow units to molecular flow units), that the gas selection has no effect on the conversion.  This is because the standardized flow units (e.g. sccm, slm, scfh, etc.) are actually molar flow units based on reference conditions (STP) and the ideal gas law.

So, why do we allow the user to select gas? In the case of units like gm/sec, Kg/hr, or lb / min, we are going to need to know the gas so that we can calculate the mass. Let’s take a look at the case of converting from slm to grams/second. We will use as our same example of 10,000 slm (0°C & 760 Torr) and we will use methane (CH4) as our gas.

We showed earlier that 10,000 sccm is a molecular flow rate of 0.45 Mole / Min.  And since 1 slm = 1000 sccm, it is easy to see that 10,000 slm = 450 Mol/min. And since we know that our unit of choice (gm/sec) is in terms of seconds, let’s go ahead and convert our time units now:

10,000 slm = (450 Mole / Min) * (1 Min / 60 sec) = 7.5 Mole/ sec.

Now we need to know how much mass there is in a Mole of methane. Google is very nice for getting this number – just type, “Molecular weight of methane” and here is the result:

 

Framed mass flow converter app google screen shot resized 600 

 

By the way, Google will do this for almost all gases. So now we can finish our conversion and we get:

 

7.5 Mol / sec * (16.04 g/mol) = 120 g/sec

 


Framed mass flow converter app screen shot CH4 2 resized 600 

 

The mass flow converter app and website www.massflowconverter.com takes all the work out of these conversions and we hope that you will find this tool helpful. If you have any questions about mass flow meters and controllers, Application Engineers at Teledyne Hastings are always happy to help.

Tags: Teledyne Hastings Instruments, Flow Controller, Flow Meter, mass flow conversion, Mass Flow Calculator, Mass Flow Range, Gas Flow Range, Mass Flow, units conversion

FAQ Corner – Specifying range, pressures on Mass Flow Instruments

Posted by Wayne Lewey on Wed, May 29, 2013 @ 10:01 AM

We often see the label “One Size Fits All”.  This may be fine for some consumer goods.  However, it can be quite problematic when applied to items like shirts, gloves, or even golf clubs.  “One Size Fits All” also does not work for Mass Flow Controllers (MFC).  Not all applications are alike.  Forcing a “One Size Fits All” MFC into an unsuitable application can squander accuracy and induce valve failure.

Why do you need to specify the gas flow range on a MFC?  The Full Scale (FS) Range and Gas on a MFC directly correlates to the transmitted output (analog or digital) of the device.  In an analog device, the maximum output value (such as 5 vdc or 20 mA) will be equivalent to the FS value.  The accuracy of most MFCs is a function of this FS Range.  For analog devices, it is commonly ±1% of FS.  For digital devices, it is commonly published to be ±(0.5% of Reading + 0.2% FS).  Selecting the FS Range close to an application’s maximum flow rate optimizes accuracy for that specific application.  This is a good practice.  In addition, the gas must be specified.  Most MFCs use thermal based sensors.  These sensors actually measure the molecular flow rate rather than the mass flow rate.  Various gas molecules transfer heat differently, and thus the gas must be known.

Why do you need to specify Upstream Pressure and Downstream Pressure on a MFC?  Again, not all applications are the same.  A “One Size Fits All” MFC is typically not set up for applications at high pressure, low pressure, high differential pressure, or low differential pressure.  The definition of high and low will also fluctuate from one user to another.  Teledyne Hastings Instruments selects and tests MFC valve components (orifice, spring, etc.) that optimize valve stability for the exact application pressure conditions.When using a Teledyne Hastings Instruments MFC, you will always find the FS Range / Gas and the Upstream / Downstream Pressures listed on the serial number label.

Sample Calibration Sticker for MFC

 

Wayne Lewey was first exposed to mass flow controllers while an undergraduate at North Carolina State University (Chemical Engineering).  Today, Wayne is the International Sales Manager at Teledyne Hastings Instruments and can be reached at wlewey@teledyne.com.

Tags: Teledyne Hastings Instruments, Flow Controller, Gas Flow Range, pressure, range, differential pressure, mass flow controller, mass flow meter

FAQ Corner – Teledyne Hastings Instruments at Pittcon 2013

Posted by Brandon Hafer on Wed, Mar 13, 2013 @ 03:20 PM

It’s hard to believe that it is now March, which means that Pittcon 2013 is right around the corner. Teledyne Hastings Instruments will have Applications Engineers and representatives in attendance to answer all of your mass flow and vacuum instrumentation questions.

 

PITTCON 2013 LOGOPittcon is an annual conference on laboratory science that is organized by The Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy. Pittcon started as a small technical conference held in 1950. The first 18 conferences were held in Pittsburgh, Pennsylvania, but the conference has since grown. Locations now vary from year to year with this year’s conference being held at the Pennsylvania Convention Center in Philadelphia, Pennsylvania from March 17-21.

 

There have been many changes over the 60 plus years of the Pittsburgh Conference, and remains a worthwhile event to attend. Teledyne has had a presence at the event for the past 35 years. Included in the weeks events are thousands of exhibitors, numerous technical programs and lectures, and short courses. It provides the opportunity to meet and interact with scientist from across the country and around the world. Papers and articles are presented daily, illustrating the advancements in science in the past year. And finally, it allows for a single location to walk around and see over 17,000 companies and exhibitors with their products and technologies.

Teledyne Technologies Incorporated will have 4 companies in attendance at Pittcon this year. In addition to Teledyne Hastings Instruments, Teledyne Tekmar, Teledyne Leeman Labs, and Teledyne Judson will be exhibiting. Teledyne Tekmar is a leader in the design and manufacturing of analytical instrumentation including products for gas chromatography sample introduction, total organic carbon (TOC) and total nitrogen (TN) analyzers. Teledyne Leeman Labs is a producer of world-class instruments for elemental analysis including ICP spectrometers, atomic absorption spectrometers and mercury analyzers. Teledyne Judson is a leading designer and manufacturer of high performance infrared detectors and accessory products. The Teledyne family of companies will be located in booths 916 and 917, which are located near Entrance D to the Pennsylvania Convention Center. Teledyne employees will be giving presentations on a variety of topics while at Pittcon. If you would like more information on the schedule or the topics to be covered please contact us or stop by our booth and we can provide that information.

Teledyne Hastings Instruments has a great deal of experience with the analytical instrumentation industry. We are always interested in new applications even if they do not exactly fit into the standard product design for mass flow or vacuum instrumentation. We are very willing to examine possible custom designs to meet the requirements of your system. Some examples of previous custom applications include a variety of non-standard packages for both our mass flow and vacuum products, modified electronics, high pressure designs, and even custom designed flow and vacuum sensors.

 

We welcome your comments and your questions and look forward to seeing you at Pittcon 2013. Please stop by our booth and discuss your projects with either Vikki Jewel or Brandon Hafer. You can also email your questions to Victoria.Jewell@Teledyne.com or Brandon.Hafer@Teledyne.comand we’ll be happy to respond and work with you. 

Brandon Hafer is an Application Engineer with Teledyne Hastings Instruments. He was raised in Pottsville in Eastern Pennsylvania and is a fan of the Philadelphia Phillies and Philadelphia Eagles. He is looking forward to returning to the Philadelphia area for Pittcon 2013. If you would like to contact him, he can be reached at brandon.hafer@teledyne.com.

 

 

 

Tags: Teledyne Hastings Instruments, vacuum instruments, mass flow instruments