Have questions? Need Help?
757.723.6531 | 800.950.2468

Teledyne Hastings Instruments Blog

Understanding Piezoelectric Pressure Sensors and Piezo Pressure Vacuum Gauges

Posted by Will Harrison on Thu, Nov 20, 2014 @ 10:09 AM

Understanding Piezoelectric Pressure Sensors and Piezo Pressure Vacuum Gauges

Piezoelectric pressure sensors use a specialized material to create a small voltage when mechanical stress is applied to it. In this blog we will explain the principles behind the Piezoelectric pressure sensor, review its specific attributes and then discuss how it is used in vacuum gauge technology and industry applications.

Piezoresistive Pressure Sensors

A Piezoelectric pressure sensor functions on the principle that when mechanical stress is applied to a piezoelectric crystal, an electric potential is generated which is directly proportional to the pressure applied. A vacuum gauge that uses a piezoelectric pressure sensor typically houses the sensor in the diaphragm. This provides good linearity for vacuum transducers as the output signal correlates to the applied pressure. This signal is then used to produce an output voltage that is converted to a pressure measurement. Piezoelectric sensors are rugged and often used for measuring dynamic pressure. Because Piezoelectric sensors have a high sensitivity to dynamic changes in pressure, they are well-suited to the measurement of small changes, even in very high-pressure environments. Although they have a high sensitivity to dynamic pressure that can also be used to measure static pressures. 

Piezoelectric pressure sensors are typically used for measuring atmospheric pressure but can be paired with additional vacuum, pressure sensor technologies to create a wide-range vacuum gauge capable of measurement from vacuum to atmosphere. In some cases, a wide-range vacuum gauge can be further expanded upon by adding a 3rd technology to provide a compact solution capable of wide-range measurement from atmospheric pressure to ultra-high vacuum.

"Direct" and "Indirect" Vacuum Pressure Gauges

In vacuum technology, pressure measurement is accomplished using either  “Direct” or “Indirect” methods. Direct gauges are so-called because they directly measure the force imparted on a surface. Based on the formula: P = F /A (pressure (P) equals force (F) per unit area (A), the gauge directly measures the pressure. Some examples of direct gauges include: bourdon gauges, capacitance manometers and Piezoelectric gauges.

Bourdon Gauge Teledyne Hastings Instruments Framed

Bourdon Gauge

One of the primary benefits of a direct vacuum gauge is the ability to make accurate measurements regardless of gas type. For example, if the system has 20 Torr of argon, helium, methane, or air, a direct measurement gauge will read the same pressure. Because of this attribute, direct gauges are referred to as “gas composition independent”. These are helpful to see the operating pressure being used during the process. 

Indirect gauges do not “directly” measure the force associated with the gas in the chamber. Rather, these gauges measure a property associated with the gas. For example, thermocouple vacuum gauges measure the thermal conductivity of the gas, which is a function of the pressure. Another example of an indirect gauge is the pirani vacuum gauge which measures the pressure-dependent thermal conductivity of the gas in a vacuum using a heated element, such as a wire or thin-film membrane. The heated element is part of a resistance bridge. The temperature, and thus the resistance of the heated element in the vacuum, changes as the pressure changes. By measuring the electrical behavior of the bridge, the pressure in the vacuum can be determined. Consequently, thermocouple and Pirani vacuum gauges can both be called indirect gauges.

Thermocouple_Guage_Tubes_Teledyne_Hastings_Instruments_framed                 HVG 2020B Angle Finger 20.9C

 Thermocouple Gauge                     Pirani Gauge

Application: Vacuum Pressure Impregnation (VPI) Systems

Teledyne Hastings uses piezo sensors for pressure measurements in our HVG-2020A and HVG-2020B vacuum gauges. The HVG-2020A vacuum gauge uses a Piezoelectric sensor that provides accurate pressure measurement throughout the rough vacuum region. The HVG-2020B is a dual-sensor vacuum gauge that uses a Piezoelectric sensor and a Pirani sensor to measure a wide range.

Vacuum Pressure Impregnation VPI System

Because the HVG-2020A measures from 0.1 Torr to 1000 Torr, it is well-suited to vacuum pressure impregnation (VPI) applications. Vacuum pressure impregnation (VPI) is an important application for applying insulating materials, as well as producing void-free castings. A typical example is the encapsulation of windings in electric motors. If an insulating resin is simply “painted” on a winding, the result will be a network of uninsulated voids between the winding layers. Applying pressure may force some insulation into the voids, but the subsequent release of that pressure will cause the trapped gas to expand again, causing voids to reappear.

These voids in the insulation can lead to motor failure due to movement of the wiring during operation. Also, in high-voltage applications, these air-filled gaps can serve as sites for corona discharge formation, leading to losses in efficiency and resulting in further weakening of the dielectric.

The proper method to prepare windings, and other potted devices for impregnation, is to begin by applying vacuum.

  1. The first step is to load the assembly into a vacuum/pressure chamber and apply vacuum to remove air from the voids between the windings. A suitable pressure for this step is 5 Torr.
  2. The next step involves a two-part soak. While under vacuum, the insulating resin is introduced into the chamber from a storage vessel. The vacuum provides the additional benefit of removing any air bubbles that may be present in the resin. After a dwell period, the chamber is pressurized to 85-95 psig for another period of time. This pressurization forces the resin into the previously evacuated voids in the winding layers.
  3. After another dwell period, the pressure is relieved and the surplus resin is returned to the storage vessel. With the chamber at atmospheric pressure, it is opened and the assembly is removed. This process results in void-free application of the insulating resin on the windings.

Teledyne Hastings: HVG-2020A Vacuum Gauge

HVG 2020A_76307_fingerThe Teledyne Hastings’ HVG-2020A vacuum gauge is a media-isolated, gas composition independent, piezoresistive instrument that provides accurate pressure measurement throughout the rough vacuum region. 

The HVG-2020A is easy to install, can be configured with an optional touchscreen display to offer a choice of data views, and provides both analog and digital output for process control integration.

  • With a wide variety of linear analog output signals to select from, the HVG-2020A is an excellent choice to replace more expensive capacitance manometers.
  • Digital output options include RS232 and RS485 via a connection on the top of the gauge.  A USB connection is also available on many models to make connection and operation simple.
  • Monitor and view data remotely using our free, Microsoft® Windows®-based software and log data to Microsoft® Excel® for comprehensive diagnostics that record how the vacuum behaves over time.

Analog I/O: The HVG-2020A has a 9-pin D-sub connection on top of the gauge that allows an analog output signal to be measured amongst other features.  The selected linear analog output signal is proportional to the full-scale range of the sensor (1000 Torr).

  • HVG 2020A_topAvailable outputs include: 0-1 VDC, 0-5 VDC, 0-10 VDC, 0-20 mA, and 4-20 mA.  The vacuum gauge is factory-configured with one of these outputs “active”, but can be easily changed using the touchscreen interface (if installed), or using digital communication when not configured with a touchscreen. Digital communication with the HVG-2020A will be discussed in greater depth in the next section.  
  • The 9-pin D-sub connection has Hi and Lo setpoints which are activated when the pressure is above or below the respective setpoint. Additionally, the 9-pin D-sub has a pin for input power and can accept 12-36 VDC.  For installations without 12-36 VDC, power can be supplied using a bayonet-style connector at the 24 VDC input connection.

Digitial I O for HVG 2020ADigital I/O:  As mentioned earlier, the HVG-2020A offers a variety of digital communication options in addition to the previously discussed analog choices.

 

  • The micro-USB connection is the simplest method to interface the vacuum gauge and allows it to be directly connected to a PC without the need for adapters or extra wiring. 
  • The 4-conductor TRRS connection can be used to “daisy-chain” multiple gauges together using RS485 or a standard RS232 communication connection. 
  • The 9-pin D-sub connection has two pins designated for TTL serial communication.
  • LabVIEW™ Drivers

All of these digital communication options (with the exception of TTL) enable PC connection and allow monitoring and viewing of data remotely using our free Microsoft® Windows®-based software.  This software has many useful features including data logging and  customization / configuration of the vacuum gauge.  Digital communication is also used to change the analog output, adjust Hi and Lo setpoint values, stream pressure readings, or change pressure units (among many other functions), when the HVG-2020A is not configured with the optional display.

Touchscreen Display:  The most powerful feature of the HVG-2020A is the optional touchscreen display which allows monitoring of pressure measurements in a variety of combinations and graphic representations while operating. The display is powered off the vacuum gauge power supply (no additional power supply needed) and is especially useful for installations in which a remote display would be inconvenient. Five different display modes (shown left to right below) include: Pressure, Pressure and Temperature, Setpoint, Bar Graph, and Pressure over Time.  Note that the pressure measurement is always displayed in each mode. 

The touchscreen’s Menu Button allows the user to cycle through a selection of submenus to change the screen orientation (should the gauge be mounted in a position other than vertical), zero the gauge (only performed if the system pressure is known to be well below 0.1 Torr), view device information (serial number and firmware level), change the analog output, select RS232 or RS485 and a number of baud rates, and restore the vacuum gauge’s configuration to factory default settings.  The straight-forward arrangement of measurements and easy to read display, lets you “see clearly”, similar to 20/20 vision!

Applications and Industries

  • Rough Vacuum Monitoring

  • Semiconductor
  • Laser Systems
  • Chemical Research
  • Air Sampling
  • Central Vacuum Monitoring
  • Oil Reprocessing
  • Medical Research

Tags: Vacuum gauge, Sensor, pressure, vacuum pressure, vacuum instruments

Vacuum Pressure Measurement & Unit Guide

Posted by Doug Baker on Mon, Sep 22, 2014 @ 04:23 PM

Note: The content of this blog was updated February 4, 2023 to provide more information for the reader.

The applications engineers here at Teledyne Hastings discussed topics for our blog. We all agreed that one of the more frequent questions fielded, involves the units used to measure vacuum levels. We find that the technicians who use their vacuum system daily often seem to develop a sixth sense about the “health” of their systems. They know something isn’t quite right when the base vacuum pressure (or rate of pressure change) is not what they expect. So, when vacuum pressure measurements are inconsistent from batch-to-batch, that is the time when the user stops to ask the meaning behind the data that their vacuum measurement instrumentation is providing.

Measuring Vacuum Pressures

A vacuum exists when there is negative pressure, or when there is system pressure that is less than atmospheric pressure. Manufacturing processes generate different levels of vacuum when operating at peak efficiency for a given vacuum application that are measured using a vacuum gauge. Absolute vacuum is the absence of all matter. Atmospheric pressure, also known as barometric pressure, is the pressure due to earth’s atmosphere. Atmospheric pressure is 760 Torr or 14.696 psia at sea level and changes with altitude. The vacuum pressure scale is book-ended by absolute vacuum pressure in the “ultra-high” vacuum range and atmospheric pressure at the “rough” vacuum range. It should be noted that absolute vacuum, or perfect vacuum, is never truly attained.

Most users know that vacuum is commonly measured using units of pressure. There are a few different systems of pressure measurement, and this blog will discuss those most used. In Armand Berman’s book, Total Pressure Measurements in Vacuum Technology, pressure unit systems are divided into two categories: “Coherent Systems” and “Other Systems”.

Common Units of Vacuum

“Coherent Systems” of units are based on the definition of pressure (P) as the force (F) exerted on a chamber wall per unit area (A). P = F/A. The International System of Units, or SI units, is commonly used for pressure measurement. http://physics.nist.gov/cuu/Units/units.html The SI unit for pressure is the Pascal (Pa), and it is interesting to note that NIST (National Institute of Standards and Technology) published papers are always required to use SI units. Again, the SI unit for pressure (force per unit area) is the Pascal. 1 Pa = 1 N /m2.

As a unit of pressure, the Pascal is not always convenient to use because vacuum systems often operate in pressure ranges where collected data results in large numbers. For example, near atmospheric pressure, we would measure approximately 100,000 Pa. So, a more convenient unit, the bar, was developed. (1 bar = 100,000 Pa)

Moving lower in pressure, it is very helpful to then use the mbar (1 mbar = 0.001 bar), which has become the predominate unit of measure in Europe, as the basis for describing pressure levels. As a specific example, look at the base pressure specification of a turbo pump, which will typically be given in terms of mbar (e.g., Base Pressure < 1 x 10-10 mbar).

“Other Systems” of units include the Torricelli system, which is based on an experiment (shown in the diagram below) conducted by the Italian scientist, Evangelista Torricelli. In this experiment, the pressure exerted on the mercury can be shown to be P = hdg, where h is the height of the mercury column, d is the density, and g is the acceleration due to gravity.

Simple Barometer

By measuring the mercury column height, the pressure can be determined. The Torr unit (named after Torricelli) has been defined as 1 millimeter of mercury (1 Torr = 1 mmHg). This unit, as well as the use of the mTorr unit (1 mTorr = 0.001 Torr), is commonly used in the United States. Historically, pressure was sometimes described in terms of “microns”, which simply meant a mercury column height of one micron (1x10-6 m). Note that the micron and the mTorr are the same.

Lastly, it should be noted that occasional confusion arises between the use of different, but seemingly similar, units of pressure. As explained above, the mbar and the mTorr are not the same. One mbar has the same order of magnitude as one Torr (1 mbar = 0.75 Torr).

 

Unit Conversions

The table below gives some conversion values between various commonly used units of pressure and vacuum. A useful website for conversions:

http://www.onlineconversion.com/pressure.htm

 

Pa

mbar

Torr

mTorr (micron)

Atm

1 Pa =

1

0.01

0.0075

7.50

~ 10-5

1 mbar =

100

1

-.75

750.06

~ 10-3

1 Torr =

133.3

1.333

1

1000.0

~ 10-3

1 mTorr (micron) =

0.1333

0.00133

0.001

1

~ 10-6

1 Atm =

101,325

1013.25

760

760,000

1

 

Absolute Pressure and Gauge Pressure

In conclusion, keep in mind that vacuum measurements can be referenced to ambient pressure, gauge pressure measurement or absolute pressure measurement (perfect vacuum). An absolute pressure measurement is referenced with respect to absolute vacuum. Absolute pressure will often be designated by the letter “a” after the unit of measure; “psia.” ​As an example, an absolute pressure reading of 30 psia (pounds per square inch absolute) is a pressure that is 30 psi above vacuum. It is important to understand that there is no negative absolute pressure. There are some

Gauge pressure measurements are measured relative to the ambient atmospheric pressure. Relative, or gauge pressure, will often be designated by the letter “g” after the unit of measure; “psig.” As an example, 30 psig is a gauge pressure that is 30 psi above ambient atmosphere (typically 14.7 psia at sea level). In this example the gauge pressure, 30 psig, is equal to an absolute pressure of 44.7 psia.

 

What is a vacuum system?

A vacuum system can consist of multiple a vacuum pumps and vacuum gauges attached to a tank that is designed to measure below atmospheric pressure. The vacuum pumps reduce the air pressure inside of the tank to the pressure range that the vacuum pump is rated for. Different vacuum pumps bring the vacuum pressure to different levels depending on the strength of the vacuum pump.

Attached to the tank is usually at least one vacuum pressure gauge. An application may require another type of vacuum gauge to measure a different pressure point. An example of this would be using a piezo pressure gauge and a Pirani pressure gauge to have a larger range of the vacuum pressure measured. A piezo vacuum gauge would be used to measure the rough vacuum range around atmosphere and the Pirani could be used to measure below 1 Torr in the mTorr range. There are vacuum gauges that use technologies from different vacuum gauges to create a combination vacuum gauge to measure vacuum pressure across a wider pressure range. Teledyne Hastings combines both the Pirani and piezo technologies to make the HVG-2020B vacuum pressure gauge.

 

Vacuum Gauges Poster

Mass Flow - Vacuum Gauge Posters

Vacuum Gauges
Free Poster
Unit Conversions and More

Please send me the poster(s)

 


Original Content posted Sept 22, 2014

FAQ Corner - Units for Vacuum Measurement
an overview of units used to measure pressure

Earlier this year, the applications engineers here at Teledyne Hastings discussed topics for our blog. We all agreed that one of the more frequent questions that we discuss with folks involve the units used to measure vacuum levels. We find the technicians who use their vacuum systems daily often seem to develop a sixth sense about the “health” of their systems. They know something isn’t quite right when the base pressure (or rate of pressure change) is not what they expect. So, when pressure measurements are not consistent from batch to batch, that is the time when the user stops to ask the meaning behind the data that their vacuum measurement instrumentation is providing.

Now, most users know that vacuum is commonly measured using units of pressure. There are a few different sets of pressure units, and this blog will discuss the more commonly used ones. In Armand Berman’s book, Total Pressure Measurements in Vacuum Technology, pressure unit systems are divided into two categories: “Coherent Systems” and “Other Systems”.

Coherent Systems of Units are based on the definition of pressure (P) as the force (F) exerted on a chamber wall per unit area (A). P = F/A.  The International System of Units, or SI units, is commonly used for pressure measurement. http://physics.nist.gov/cuu/Units/units.html  The SI unit for pressure is the Pascal (Pa). It interesting to note that at NIST (National Institute of Standards and Technology), published papers are always required to use the SI set of units. Again, the SI unit for pressure (force per unit area) is the Pascal. 1 Pa = 1 N /m2.

Now, the Pascal as a unit of pressure is not always the most convenient because vacuum systems are often operating in a range of pressures where we would need to collect data using large numbers. For example, near atmospheric pressure, we would measure approximately 100,000 Pa. So, a more convenient unit, the bar, has been derived. (1 bar = 100,000 Pa)

Moving lower in pressure, it is very helpful to then use the mbar (1 mbar = 0.001 bar). So many vacuum users, especially in Europe, use the mbar as the basis for describing pressure levels. As a specific example, look at the base pressure specification of a turbo pump, it will be given in terms of mbar (e.g. Base Pressure < 1 x 10-10 mbar).

Another system of pressure units is based on the Torricelli experiment (shown in the diagram). In this experiment, the pressure exerted on the mercury can be shown to be P = hdg, where h is the height of the mercury column, d is the density, and g is the acceleration due to gravity.

Simple Barometer

By measuring the mercury column height, the user can determine the pressure. The Torr unit (named for the Italian scientist Torricelli) has been defined to be 1 millimeter of mercury (1 Torr = 1 mmHg). This unit is very common, especially in the United States. It is also common to use the mTorr (1 mTorr = 0.001 Torr). Many years ago, pressure was sometimes described in terms of “microns”, which simply meant a mercury column height of one micron (1x10-6 m). Note that the micron and the mTorr are the same.

One last word about the units used to measure vacuum: on occasion, there is confusion between pressure units. As we have seen above, the mbar and the mTorr are not the same. One mbar has the same order of magnitude as one Torr  (1 mbar ≈ 0.75 Torr).  The table below gives some approximate conversion values. A useful website for conversions:

 http://www.onlineconversion.com/pressure.htm

 

Pa

mbar

Torr

mTorr (micron)

Atm

1 Pa =

1

0.01

0.0075

7.50

~ 10-5

1 mbar =

100

1

0.75

750.06

~ 10-3

1 Torr =

133.3

1.333

1

1000.0

~ 10-3

1 mTorr (micron) =

0.1333

0.00133

0.001

1

~ 10-6

1 Atm =

101,325

1013.25

760

760,000

1

Douglas Baker is the Director of Sales & Business Development of Teledyne Hastings. Antonio Araiza prepared the Torricelli experiment drawing. Antonio is the head of Technical Documentation at Teledyne Hastings (and is among the best soccer referees in the Commonwealth of Virginia).

Tags: Teledyne Hastings Instruments, pressure, mTorr, mBar, micron, pascal, torr, vacuum pressure, units of measurement, vacuum gauges, vacuum meters, vacuum controllers

New! Free Teledyne Hastings Mass Flow Converter APP

Posted by Doug Baker on Tue, Aug 05, 2014 @ 02:56 PM

Teledyne Hastings is proud to offer our Mass Flow Converter app. We have created a version for iPhone, iPad, and Droid. We have also created a web-based version that you can find at www.massflowconverter.com

In this blog article, we will discuss the motivation to build the app, how it works, and how it can be used.

The first question you might be asking is: Why do we need an app to convert from one set of mass flow units to another? For instance, if you want to convert from inches to centimeters, you would just multiply by 2.54. But, converting between mass flow units is not always that straight forward. So we have developed a tool that makes it easy.

We are going to look at some examples, but first let’s review what we mean by mass flow. When we think about mass flow, it can be helpful to think in terms of the flow of individual molecules. So while flow meters are often specified by units like sccm (standard cubic centimeters per minute) or scfm (standard cubic feet per minute), the mass flow rate is ultimately about the number of molecules (n) moving through a given cross sectional area per unit time (see figure below).

 

 Cross Section resized 600

 

 

 

So as our first example, let’s take a look at the conversion of 10,000 sccm (10,000 cm3/min) to a molecular flow rate. First, we need to ask, “How many molecules are in 10,000 sccm?” In the figure below, we show a container that is 10,000 cm3 in volume. Now, before we can calculate the number of gas molecules in a volume, we must know the pressure and temperature of the gas. We can use the ideal gas law:

n = (P * V) / R*T where n is the number of molecules, P is the pressure, V is the Volume, R is the Universal Gas Constant and T is the Temperature.

 

Framed Molecules per volume

Now we need to select some given pressure and temperature so that we can calculate the number of molecules – these are called the reference conditions or the STP (Standard Temperature and Pressure). In many cases, 0°C and 760 Torr are used for the STP. But this is not always the case. So it is always very important to specify the reference conditions (STP) any time you use a standardized mass flow unit like sccm, slm, scfh, etc (any mass flow unit that starts with “s” is going to need the reference conditions or STP specified). In our example, we are going to use STP of 0°C & 760 Torr.

OK, so here we go:     n = (1 atm) * (10,000 cc) / (82.053 cc * atm / K * mole) * (273 K)

Note that we have used a value of R in terms of pressure in Atmosphere (760 Torr = 1 atm), and Temperature in Kelvin (0°C = 273K). 

n = 0.45 mole

In other words, a flow rate of 10,000 sccm (0C, 760 Torr) is the same as a molecular flow rate of 0.45 Mole / minute.

OK that is the hard way. It’s much easier to use the mass flow converter app. In the example shown above, we would dial sccm on the left and Mole/Min on the right. Then to select the reference conditions, we use the menu in the center. See Fig. 3

 Framed screen shot mass flow converter app N2 resized 600

If you are like me, you will start to play with the App. And soon you will notice that the user can change the gas using the pull down menu at the top. But notice that in the case of our first example (converting from standardized mass flow units to molecular flow units), that the gas selection has no effect on the conversion.  This is because the standardized flow units (e.g. sccm, slm, scfh, etc.) are actually molar flow units based on reference conditions (STP) and the ideal gas law.

So, why do we allow the user to select gas? In the case of units like gm/sec, Kg/hr, or lb / min, we are going to need to know the gas so that we can calculate the mass. Let’s take a look at the case of converting from slm to grams/second. We will use as our same example of 10,000 slm (0°C & 760 Torr) and we will use methane (CH4) as our gas.

We showed earlier that 10,000 sccm is a molecular flow rate of 0.45 Mole / Min.  And since 1 slm = 1000 sccm, it is easy to see that 10,000 slm = 450 Mol/min. And since we know that our unit of choice (gm/sec) is in terms of seconds, let’s go ahead and convert our time units now:

10,000 slm = (450 Mole / Min) * (1 Min / 60 sec) = 7.5 Mole/ sec.

Now we need to know how much mass there is in a Mole of methane. Google is very nice for getting this number – just type, “Molecular weight of methane” and here is the result:

 

Framed mass flow converter app google screen shot resized 600 

 

By the way, Google will do this for almost all gases. So now we can finish our conversion and we get:

 

7.5 Mol / sec * (16.04 g/mol) = 120 g/sec

 


Framed mass flow converter app screen shot CH4 2 resized 600 

 

The mass flow converter app and website www.massflowconverter.com takes all the work out of these conversions and we hope that you will find this tool helpful. If you have any questions about mass flow meters and controllers, Application Engineers at Teledyne Hastings are always happy to help.

Tags: Teledyne Hastings Instruments, Flow Controller, Flow Meter, mass flow conversion, Mass Flow Calculator, Mass Flow Range, Gas Flow Range, Mass Flow, units conversion

FAQ Corner – Specifying range, pressures on Mass Flow Instruments

Posted by Wayne Lewey on Wed, May 29, 2013 @ 10:01 AM

We often see the label “One Size Fits All”.  This may be fine for some consumer goods.  However, it can be quite problematic when applied to items like shirts, gloves, or even golf clubs.  “One Size Fits All” also does not work for Mass Flow Controllers (MFC).  Not all applications are alike.  Forcing a “One Size Fits All” MFC into an unsuitable application can squander accuracy and induce valve failure.

Why do you need to specify the gas flow range on a MFC?  The Full Scale (FS) Range and Gas on a MFC directly correlates to the transmitted output (analog or digital) of the device.  In an analog device, the maximum output value (such as 5 vdc or 20 mA) will be equivalent to the FS value.  The accuracy of most MFCs is a function of this FS Range.  For analog devices, it is commonly ±1% of FS.  For digital devices, it is commonly published to be ±(0.5% of Reading + 0.2% FS).  Selecting the FS Range close to an application’s maximum flow rate optimizes accuracy for that specific application.  This is a good practice.  In addition, the gas must be specified.  Most MFCs use thermal based sensors.  These sensors actually measure the molecular flow rate rather than the mass flow rate.  Various gas molecules transfer heat differently, and thus the gas must be known.

Why do you need to specify Upstream Pressure and Downstream Pressure on a MFC?  Again, not all applications are the same.  A “One Size Fits All” MFC is typically not set up for applications at high pressure, low pressure, high differential pressure, or low differential pressure.  The definition of high and low will also fluctuate from one user to another.  Teledyne Hastings Instruments selects and tests MFC valve components (orifice, spring, etc.) that optimize valve stability for the exact application pressure conditions.When using a Teledyne Hastings Instruments MFC, you will always find the FS Range / Gas and the Upstream / Downstream Pressures listed on the serial number label.

Sample Calibration Sticker for MFC

 

Wayne Lewey was first exposed to mass flow controllers while an undergraduate at North Carolina State University (Chemical Engineering).  Today, Wayne is the International Sales Manager at Teledyne Hastings Instruments and can be reached at wlewey@teledyne.com.

Tags: Teledyne Hastings Instruments, Flow Controller, Gas Flow Range, pressure, range, differential pressure, mass flow controller, mass flow meter

FAQ Corner – Teledyne Hastings Instruments at Pittcon 2013

Posted by Brandon Hafer on Wed, Mar 13, 2013 @ 03:20 PM

It’s hard to believe that it is now March, which means that Pittcon 2013 is right around the corner. Teledyne Hastings Instruments will have Applications Engineers and representatives in attendance to answer all of your mass flow and vacuum instrumentation questions.

 

PITTCON 2013 LOGOPittcon is an annual conference on laboratory science that is organized by The Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy. Pittcon started as a small technical conference held in 1950. The first 18 conferences were held in Pittsburgh, Pennsylvania, but the conference has since grown. Locations now vary from year to year with this year’s conference being held at the Pennsylvania Convention Center in Philadelphia, Pennsylvania from March 17-21.

 

There have been many changes over the 60 plus years of the Pittsburgh Conference, and remains a worthwhile event to attend. Teledyne has had a presence at the event for the past 35 years. Included in the weeks events are thousands of exhibitors, numerous technical programs and lectures, and short courses. It provides the opportunity to meet and interact with scientist from across the country and around the world. Papers and articles are presented daily, illustrating the advancements in science in the past year. And finally, it allows for a single location to walk around and see over 17,000 companies and exhibitors with their products and technologies.

Teledyne Technologies Incorporated will have 4 companies in attendance at Pittcon this year. In addition to Teledyne Hastings Instruments, Teledyne Tekmar, Teledyne Leeman Labs, and Teledyne Judson will be exhibiting. Teledyne Tekmar is a leader in the design and manufacturing of analytical instrumentation including products for gas chromatography sample introduction, total organic carbon (TOC) and total nitrogen (TN) analyzers. Teledyne Leeman Labs is a producer of world-class instruments for elemental analysis including ICP spectrometers, atomic absorption spectrometers and mercury analyzers. Teledyne Judson is a leading designer and manufacturer of high performance infrared detectors and accessory products. The Teledyne family of companies will be located in booths 916 and 917, which are located near Entrance D to the Pennsylvania Convention Center. Teledyne employees will be giving presentations on a variety of topics while at Pittcon. If you would like more information on the schedule or the topics to be covered please contact us or stop by our booth and we can provide that information.

Teledyne Hastings Instruments has a great deal of experience with the analytical instrumentation industry. We are always interested in new applications even if they do not exactly fit into the standard product design for mass flow or vacuum instrumentation. We are very willing to examine possible custom designs to meet the requirements of your system. Some examples of previous custom applications include a variety of non-standard packages for both our mass flow and vacuum products, modified electronics, high pressure designs, and even custom designed flow and vacuum sensors.

 

We welcome your comments and your questions and look forward to seeing you at Pittcon 2013. Please stop by our booth and discuss your projects with either Vikki Jewel or Brandon Hafer. You can also email your questions to Victoria.Jewell@Teledyne.com or Brandon.Hafer@Teledyne.comand we’ll be happy to respond and work with you. 

Brandon Hafer is an Application Engineer with Teledyne Hastings Instruments. He was raised in Pottsville in Eastern Pennsylvania and is a fan of the Philadelphia Phillies and Philadelphia Eagles. He is looking forward to returning to the Philadelphia area for Pittcon 2013. If you would like to contact him, he can be reached at brandon.hafer@teledyne.com.

 

 

 

Tags: Teledyne Hastings Instruments, vacuum instruments, mass flow instruments

FAQ Corner – What is the Importance of STP Conditions on Mass Flow

Posted by Brandon Hafer on Thu, Mar 07, 2013 @ 03:19 PM

As I go through the day looking at various mass flow applications, I often notice that it is very easy for users to overlook one of the crucial items required for calculating mass flow. Looking at an application with its established requirements, we often jump right to determining “what flow rate is required?” However, it is important to remember that mass flow applications using volumetric units must reference a standard temperature and pressure. But why is this the case?

When examining liquid flow instruments, we know that liquids are incompressible and thus the amount of a substance present is determined by the volume being used. This leads to a simple calculation using density with the already determined volume to find the mass present in the volume or the volumetric flow.

GAs molecules @ STP Gases, however, ARE compressible and so the volume is only one factor in determining the amount of material being measured. If we look at the ideal gas law that you may remember from a chemistry class school (PV = nRT), we understand that temperature (T) and pressure (P) must also be considered in the equation. Otherwise it is impossible for us to know “how much” of the substance (n) there is in the space (V) or flowing through the system.

But given all of this information do we actually end up with the mass flow? The actual quantification of this “how much” calculation is expressed in moles (n), which is an extremely large number of molecules of a gas stated as Avogadro’s number, equal to 6.02x1023 (Don’t be scared by this value, though. A mole is a number, just like one dozen is 12, so one mole is 6.02x1023 molecules). Since the number of molecules of a gas and the mass are directly related for each gas type (i.e. molar mass), we are able to calculate the mass of the volume or volumetric flow based on the number of moles present. This is based on the assumption that the measured gas is pure and not contaminated with any other gases.

We’ll look at an example of the difference of STP conditions in a mass flow meter.  Teledyne Hastings Instruments assumes STP of 0°C and 760 Torr, but would prefer the customer to specify their STP conditions for the application. We will use the frequently referenced STP of 20°C and 760 Torr for the second part of this example. Suppose that we are looking to  measure 1 SLM (Standard Liter per Minute) of Nitrogen gas. As I’ve discussed earlier, the 1 SLM must be referenced to an STP value, so we will use our assumed conditions of 0°C and 760 Torr. If we were to change to the second set of conditions, the number of moles present in the flow (Molar Flow Rate) would change, and our mass flow rate would thus change (based on the direct relationship between mass and moles). Our initial mass flow rate of 1 SLM of Nitrogen at 0°C and 760 Torr would now be 1.074 SLM of Nitrogen at 20°C and 760 Torr.

Mass Flow Meter  Mass flow controllerAn important item to note is that the STP conditions are not actually present during the calibration of mass flow meters and mass flow controllers. Gas conditions are not brought to 0°C and 760 Torr prior to running calibration of equipment. The substance may not even be in gas phase at 0°C. The STP conditions are simply stated to define the standard volumetric flow rates of a substance IF it were an ideal gas at standard conditions.

This is also the reasoning for the addition of the “S” or “Standard” at the start of the stated volumetric flow rate (e.g. Standard Liters per Minute (SLM) or Standard Cubic Centimeters per Minute (SCCM)). We are stating the volumetric flow that would be present using standard conditions. So, using the information that we learned earlier, by stating the units in Standard Volumetric Flow Rate we are actually stating the Molar Flow Rate. This information changes based on the standards we are referencing and emphasizes the importance of stating the required STP conditions.

We welcome your comments and your questions about mass flow. Please complete the form below:

                                              Let's Talk!


Brandon Hafer is an Application Engineer with Teledyne Hastings Instruments. He completed his undergraduate degree studying meteorology at the Pennsylvania State University before serving as an officer in the United States Navy. He received his master’s degree in Systems Engineering from George Washington University and has been with Teledyne Hastings Instruments for two years. If you would like to contact him, he can be reached at brandon.hafer@teledyne.com.

Tags: Teledyne Hastings Instruments, Flow Controller, Flow Meter, STP, Thermal Flow, Standard Temperature and Pressure

Happy 45th Birthday Teledyne Hastings Instruments

Posted by Doug Baker on Tue, Feb 26, 2013 @ 03:17 PM

 

The entries in these blog pages are intended to provide helpful knowledge regarding vacuum gauges, vacuum instruments, gas mass flow meters, and flow controllers. But we could not pass an opportunity to celebrate an anniversary of sorts – on January 30th, 1968, Teledyne and Hastings - Raydist, Inc. announced that Teledyne would acquire the Hastings - Raydist company. According to the announcement in the Wall Street Journal, Hastings shareholders would receive one share of Teledyne stock for each 2.98 shares of Hastings – Raydist stock. So Hastings has been a part of Teledyne for 45 years…


Happy 45th birthday Teledyne Hastings Instruments!

 

Teledyne Hastings Vacuum gauge Apollo 11The history of the Hastings Instruments Company stretches all the way back to 1944. Next year, Hastings will celebrate its 70th birthday. But while we are in a corporate history mood, it might be fun to recall everybody’s favorite Hastings’ story:  In 1967, Hastings vacuum sensors were designed to travel to the moon and back. One of the objectives of the Apollo missions was to bring lunar samples back to earth. Special boxes, fitted with Hastings vacuum thermocouples were designed and built by Oak Ridge National Labs. Each box was required to be vacuum sealed; the Hastings thermocouple ensured that the seal was good before launch, and after splash down. The box and sensor worked perfectly.  Today, the thermopiles from the Apollo 14 mission are on display on a wall between one of the company’s conference rooms and a hallway. A magnifying lens and lamp installed in the display allows visitors to see the vacuum sensor.

Carol Hastings Saunders, daughter of Charles and Mary Hastings, recounts an interesting story in her book, “The Story of Hastings Raydist”. Two years prior to the acquisition of Hastings by Teledyne, Hastings was looking for an acquisition of its own to handle military contracts. The company considered Automated Specialties in Charlottesville Virginia. In 1965, Hastings began to acquire Automated Specialties by investing $100,000.But before the year was over, Automated Specialties was itself acquired by Teledyne. As a result, Hastings then held 11,948 shares of Teledyne. In late 1966, Hastings sold the shares and recognized $800,000 after taxes. Not bad on a $100K investment.


Today, Hastings Instruments is part of the Instrumentation Segment of Teledyne Technologies Incorporated (NYSE: TDY). The Instrumentation Segment provides measurement, monitoring and control instruments for marine, environmental, scientific and industrial applications. The Segment also provides power and communications connectivity devices for distributed instrumentation systems and sensor networks deployed in mission critical, harsh environments.  A complete history of Teledyne is given in Dr. George A. Robert’s book, “Distant Force – A Memoir of the Teledyne Corporation and the Man Who Created It”.


We welcome your comments on this history topic. Please complete the form below:

                                             Let's Talk!


Douglas Baker used his first vacuum gauge while an undergraduate physics major at Indiana University of Pennsylvania. In graduate school at William and Mary, Teledyne Hastings vacuum gauges monitored the forelines in the vacuum systems in the atomic and molecular lab where he worked. Today, Doug is the Director of Sales & Business Development at Teledyne Hastings Instruments and he can be reached at dbaker@teledyne.com

Tags: Teledyne Hastings Instruments, Vacuum gauge, Sensor

FAQ Corner – How Accurate is My Thermocouple Vacuum Gauge

Posted by Vikki Jewell on Tue, Feb 05, 2013 @ 08:24 AM

 

Recently, I found myself pouring through dozens of website posts comparing watches used by long distance runners.  This year I am pursuing, perhaps in vain, a new PB at my favorite 10K; this will require a boost from technology.  Now, if I have learned nothing in the last decade working with measurement instrumentation, it is that if a process can be measured, it can be improved.  Understanding those measurements can be a challenge.    Repeatedly, bloggers on running sites have been asking if the race course mileage should closely match the mileage on a GPS watch.  Reminding me, no matter the application, a key selection criterion for a measurement instrument is accuracy.

 Accuracy is the deviation of a reading when compared to a standard.  In general, better accuracy requires higher instrument costs.   However, too little accuracy and process efficiency, production costs, and user satisfaction may suffer. So many users want to know, “What is the accuracy of my thermocouple vacuum gauge”?   In this blog, I will discuss the accuracy of thermocouple vacuum gauges.

In the low to medium vacuum range, many users select thermocouple vacuum gauges for their long-life, rugged performance, and low cost. Typical applications in the low to medium vacuum range include lighting, monitoring cryogenic jackets, vacuum pump performance, and HVAC/refrigeration.   

Vacuum Gauge OutputIn  order to better understand the accuracy of a thermocouple vacuum gauge, it is helpful to review the response curve of these vacuum gauges. In the accompanying figure, we show the output of three of Teledyne Hastings most popular vacuum gauges. Note that each vacuum gauge tube family (DV-4, DV-5, and DV-6) has a range of pressures where the sensitivity, defined as the change in output as a function of pressure is very good. In this pressure region, the output is very repeatable and gives the best accuracy. Note that at the far ends of the curves, the sensitivity flattens out which in turn causes more uncertainty in the pressure measurement. So in general, the best accuracy of the thermocouple gauge is found in the middle of the curve. This fact can help the user select the best vacuum gauge tube family for a given application.  Note that the measurement accuracy reflects the gauge as a whole system (meter, cable, and thermocouple gauge tube) and not the individual components.  (So, it does not make sense to ask, what the accuracy of a thermocouple gauge tube is.)   Users can look up their pressures by reading their output voltages.  The voltage shown here is an amplified signal derived from the thermocouple output. 

In Nitrogen with a new vacuum gauge tube and 8 feet of meter cable, the anticipated accuracies* of the Teledyne Hastings Vacuum products are over some given range of pressures  However, as we discussed previously, in the middle of the response curve, the user can expect to have better accuracy:

VT-4 Series ± (20% of reading + 0.01 Torr) (max)

VT-5 Series ± (20% of reading + 0.2 mTorr) (max)

VT-6 Series ± (15% of reading + 1 mTorr) (max)             

*Data collected with digital meters

 It might be helpful at this point to review some of the factors that can affect thermocouple gauge accuracy. The accuracy statements shown in the chart above are for nitrogen. Since thermocouple gauges are gas species dependent (in other words, the output that the gauge will give will depend on the composition of the gas for a given pressure), the use of the gauge in gases other than nitrogen will affect the accuracy.  Also, the condition of the gauge tube is important. A gauge tube that is contaminated with pump oil and/or process material may not provide the expected accuracy. Temperature variations can also cause changes in thermocouple gauge output. Applications engineers at Teledyne Hastings are available to help you understand these effects.

                                                       Let's Talk!

                  We would like to hear from you.  Contact us with your vacuum experiences.

 Vikki Jewell is a part time 10K runner and a full time applications engineer at Teledyne Hastings. She has been helping users of scientific instrumentation for twenty years.  Vikki can be reached at victoria.jewell@teledyne.com or hastings_instruments@teledyne.com.

Tags: Teledyne Hastings Instruments, Vacuum gauge, accuracy