Argon (Ar) makes up just under 1% (0.93%) of the composition of air. Argon is odorless, tasteless, and has no color. It is a member of the noble gases. Science Notes (sciencenotes.org ) gives an interesting history of the term, “Noble gas”:
The term “noble gas” comes from a translation of the German word Edelgas, which means noble gas. German chemist Hugo Erdmann coined the phrase in 1898. Like a nobleman might consider it undignified to associate with commoners, noble gases tend not to react with other elements.
In any case, noble gases such as Argon are found in the right-hand column of the periodic table which means they have completed valence shells. The noble gases are generally monatomic and are mostly inert. The word “argon” comes from the Greek word “argos” which, according to Webster’s dictionary, means “idle, lazy.” This definition makes sense because Argon gas is quite unreactive and rarely forms compounds.
Because of its inert behavior, Argon gas has many uses. One of the most popular is the use of Argon as a cover gas when welding. A flow of Argon can provide an inert environment which prevents oxidation of welds and also allows the welder to have a more stable arc.
Argon is also used in the medical field. Argon plasma coagulation can be used to control tissue bleeding by injecting a jet of ionized argon gas. Also, since the physical probe does not have to actually touch the lesion, the procedure can be safer than other techniques. In ophthalmology, Argon lasers can be used to treat issues with the retina.
Many homes have double-pane windows filled with Argon gas. Argon provides better insulation than air because it allows less convection between the windowpanes. And because Argon is inert, it prevents deterioration of the window materials.
In lighting, an Argon glow discharge provides a pleasant purple-blue color. And in tungsten incandescent bulbs, a small amount of Argon is used to extend the bulb’s life.
Argon can also be used when making wine. In the wine’s casket or barrel, above the wine, is the headspace. Filling the headspace with Argon gas protects against oxidation and spoilage.
We could keep going in this blog and list many more applications. But we will stop this list with reference to a blog that we wrote back in 2018. The Emancipation Proclamation is stored in a double-paned encasement, designed by scientists at NIST, that that is mostly filled with Argon. You can read more here: https://info.teledyne-hi.com/blog/how-monitoring-instrumentation-is-helping-preserve-the-emancipation-proclamation
And, of course, when you need to measure Argon flow or vacuum levels with Argon, Teledyne Hastings is ready to help. Our flow instruments are able to measure and control flows from a few sccm (standard cubic centimeter per minute) up to several thousand slm (standard liters per minute).
Teledyne vacuum gauges are very good selection for use in Argon. The HVG-2020B (Click Here) is an excellent choice for measuring Ar from below 1 mTorr up to atmosphere. Convection driven pirani vacuum gauges, when used with gases other than N2/air can have curious behavior as can be seen in the cartoon below.
The HVG-2020B vacuum gauge uses a gas-independent piezoresitive sensor that does not rely on convection affects and provides a more linear response to Argon across the entire measurement range.
If you would like more information about either the 300 Vue mass flow meters or controllers, or any of our vacuum gauges including the HVG-2020B, you can talk to any of our application engineers at 757-723-6531, email hastings_instruments@teledyne.com, or LiveChat with us at www.teledyne-hi.com
Special thanks to Lawrence Ferbee from the stockroom for his cartooning skills. If you would like to see Lawrence in action as he draws, check out our HVG-2020B video:
https://www.youtube.com/watch?v=_Bk3Q7SpSUc